USE OF THE CELLULAR MODEL IN CALCULATING
THE VISCOSITY OF DISPERSE SYSTEMS

V. M. Safrai

In analyzing processes in concentrated disperse systems it is not possible to disregard the effect of
the perturbations introduced by each particle into the hydrodynamic field of the dispersion medium on the
motion of the remaining particles. This effect can be taken into account within the framework of the "cell-
ular" model, which is frequently used to investigate disperse systems and also in the kinetic theory of
dense gases [1-3]. At high concentrations only the interaction between a particle and its neighbors is im-
portant, i.e., the hydrodynamic interaction between an individual particle and other more remote particles
is effectively "screened out.” According to the cellular model to each spherical particle of radius & there
corresponds a hypothetical surface ("cell"), which in the first approximation may be regarded as a con-
centric sphere of radius b >e, flow perturbations created by the remaining particles affecting the flow
over an individual particle only through the agency of the boundary conditions at the cell surface, In what
follows this model is used as a basis for obtaining expressions for the effective coefficient of viscosity
of disperse systems for various forms of the boundary conditions at the cell surface differing from those
employed in [4]. As distinct from [1], where suspensions of solid particles were considered, the results
obtained here relate to the case in which the inclusions are not solid.

Let a spherical particle be introduced into a flow of incompressible fluid described by the velocity
distribution vi(o) = @jjXxj, where «jj is the constant symmetric velocity gradient tensor, whose trace «jj = 0
by virtue of the continuity equation [5]. The corresponding solution of the hydrodynamic problem for Stokes
flow over a liquid particle has the form [4]

V= 24 + Brs + 5Cr7) (VO x) £ + (— 5472 — 20775 4 D) v
V= 24" (vOr) r + (~ 54’72 + D) v® (1)
pV=p (— 214 + 2Br%) (W), pP= — 2mA’ (vOr) + pg

(the center of the particle is located at the coordinate origin). Here v‘(i), p(l), pqand v (2),p(2), W are the
velocity, pressure, and viscosity outside and inside the particle, respectively; A, B, C, D,A', D' are arbitrary
constants; the significance of the quantity ps is discussed in detail in [4].

Keeping in mind the stress equations of motion
005 | 0z; = 0,
both outside and inside the particle, we employ the identity
Oyp = 9 (0y5zn) / 02;,

which enables us to use the Gauss divergence theorem in calculating the value of the stress tensor aver-
aged over the volume of the system (oik)

1 ¢ 3 -
S = 5 6, &V = @) s 2,2, dS = o, (— 8.4 Ab® — 1.2Bb* + 2D) @)
. Vo r=>b

where V, is the volume of the cell. (Here we have made use of the continuity of the vector ojjxj across the
surface of the particle r = a.) By direct calculation we obtain
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From the last two expressions there follows the equation for the scalar effective viscosity of the
disperse system

po=p [1+ 5B/ (2145° — 2B — 5D9)] , (3)

(We note that in [4] an expression somewhat different from (2) was obtained as a result of the incor-
rect averaging of the stress tensor.)

At the surface of the particle the following conditions should be satisfied: continuity of the velocity
vector, disappearance of the normal components of the velocities, and continuity of the tangential and nor-
mal stresses. The quantity p, from (1) enters into only the last of these conditions (for further details see

[41).

Regarding the boundary condition at the surface of the cell r = b various opinions associated with dif-
ferent attitudes to the cellular model are expressed in the literature. We will consider three approaches to
the problem.

1. Let v(i) = V(O) at the surface of the cell. This condition has been used, for example, by Simha [1] in
calculating the viscosity of concentrated suspensions of spherical particles. Resorting to this condition to
close the algebraic system of equations for the unknown constants and introducing w = po/uy, £ = a/b, we
obtain

10% & — 1087 (x — 1) ] 4)

&) = [ B s 2 =T T T

In the limit as n — % thig expression takes the form:

10(1 —£7) }

r
HE = Li ~+ & 4 — 25E3 | 45 — OBE7 L 4210 (5)

which coincides with the expression obtained by Simha, In the limit as w — 0, which corresponds to gas
bubbles, we have

2 -} 5E7
P(E)=M1[1+€3 2,__553_’}*:55’7_2510]5 (6)

2. Let the scalar condition vr“) = vp(®) be satisfied at the cell surface and, moreover, let there be no
shear stresses between neighboring cells caused by perturbations of the main stream introduced by the
presence of the particles [2].

In this case we obtain

(M)
_ i 25% + 10 - 1087 (x — 1)
BEx)=pm [’ T O 1) =2 (5% 1 2) — 2185 1 58 (Bh — 3) — 4E0 (v — 1)}

As % > 0
25 -+ 1087 8
wE)=m [1 -+ &3 10 (1 — £%) — 2185 - 2587 — 4&10} - ( )

As % — 0
- 5 "

BO=m[1+ 85| ()

3. Thus, two conditions are imposed at the surface of the cell. Of these the more natural from the
physical standpoint is the condition that the normal component of the velocity perturbation vanishes. In [4]
an attempt was made to make do with precisely this single boundary condition at r = b, However, in this
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7 7 77 case the number of constants figuring in (1) exceeds by one the
number of boundary conditions. In [4] in order to overcome this
difficulty it was required that the solution of the linear hydrody-
namic problem of the disturbance of the main flow by a suspend-
ed particle consist of two additive parts: the undisturbed flow in
the absence of a sphere ajjXj and the flow determined by the
presence of a particle free of components proportional to the
main flow. Setting, by virtue of this assumption, D = 1 every-
where in the boundary conditions and finding the constant AB,
from (3) we obtain

(10)
. 5 (5% 4+ 2) - 1087 (x — 1)
RE X = [i + B 0w 1) T 588 (5w - 2) — 568 - 5 (5% —2) —4EP (n — 1)]
As % — o0
_ 25 4 1087 (11)
BE=wm [1 + & 10-|—25£3——56E,5+25&7—4E‘°]
As ®x — 0 ‘
(12)

1 —F7
v @ =1+ o)

It should be noted, however, that this approach, though justified in the case of an infinite flow over a
single particle, is not sufficiently well founded in the case in question.

It should be kept in mind that in Egs. (4)-(12) the viscosity is expressed in terms of the ratio of the
particle radius to the cell radius. The viscosity depends on the volume concentration of the inclusions, be-
cause the cell radius varies with concentration. Generally speaking, b ~ ap'1 3;‘however, it is scarcely
possible to specify an exact value of the cell radius that would be suitable over the entire range of concen-
trations, the more so in that the assumption that the cell is spherical is itself very approximate. In the
first approximation it may be assumed that b = ap‘1/3,which corresponds to identification of the cell vol-
ume with the specific volume of a particle in the system. In this (and only this) case at small concentra-
tions expressions (4), (7), and (10) go over into the equation obtained by Taylor for dilute emulsions of
spherical droplets of one viscous liquid in another; expressions (5), (8), (11) go over into the Einstein formula,
and (6), (9), (12) into the formula of Hut and Mark for a low-concentration dispersion of gas bubbles in a
viscous liquid [6], Graphs of the relations (5), (8), (6), (9), corresponding to £ = p, are presented in the
Fig. 1, from which, in particular, it can be seen that the curves corresponding to case 2 coincide with the
relations of Einstein and of Hut and Mark overa somewhat broader range of concentrations; however, it is
difficult to decide in favor of one model rather than another.

We note that the relations obtained describe only that part of the total momentum transfer in the sys-
tem that depends exclusively on the distortions of the streamlines as the liquid flows through a network of
stationary particles. In reality, in disperse systems there is momentum transfer associated with the ran-
dom fluctuations of the particles and the liquid. Therefore the viscosity calculated here coincides with the
effective viscosity of the disperse system only when the particle fluctuations are insignificant. A more de~
tailed discussion may be found in [4].

In conclusion it should be emphasized that the effective viscosity is determined as the proportional -
ity factor relating the value of the stress tensor averaged over the volume of the system and the mean
value of the velocity gradient tensor and not {cojk and 2wjk, as in [8], where the calculations of the vis-
cosity of dilute suspensions made in [5] are repeated, but where it is unjustifiably proposed to replace the
frequently confirmed term 2.5p in the Einstein formula by 1.5p.

The author thanks Yu. A. Buevich for discussing the results.
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